8-bit Proprietary Microcontroller

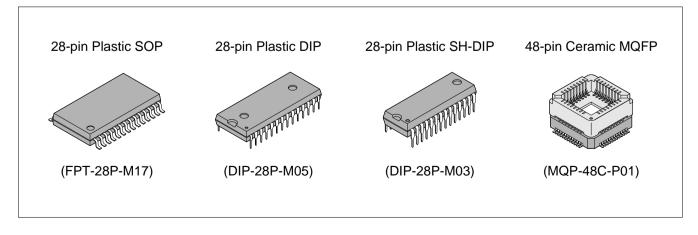
CMOS

F²MC-8L MB89190/190A Series

MB89191/193/195/P195/PV190 MB89191A/193A/195A/P195A/PV190A

■ OUTLINE

The MB89190/190A series microcontrollers contain various resources such as timers, serial interfaces, A/D converters, external interrupts, and remote-control functions, as well as an F²MC*-8L CPU core for low-voltage and high-speed operations. These single-chip microcontrollers are suitable for small devices such as remote controllers with compact packages.


*: F2MC stands for FUJITSU Flexible Microcontroller.

■ FEATURES

- Minimum execution time: 0.95 μs at 4.2 MHz (Vcc = 2.7 V)
- F2MC-8L family CPU core
- Two timers
 8/16-bit timer/counter
 20-bit timebase counter
- Serial interface
 8-bit synchronous serial (Selectable transfer direction allows communication with various equipment.)

 (Continued)

■ PACKAGE

(Continued)

• External interrupts

Edge detection (Selectable edge): 3 channels Low-level interrupt (Wake-up function): 8 channels

- A/D converter (MB89190A series only)
 - 8-bit successive approximation type: 8 channels
- Built-in remote-control transmitting frequency generator
- Low-power consumption modes

Stop mode (Almost no current consumption occurs because oscillation stops.)

Sleep mode (The current consumption is reduced about 1/3 of that during normal operation because the CPU stops.)

Packages

SOP-28, SH-DIP-28, and DIP-28

■ PRODUCT LINEUP

Part number Item	MB89191 MB89191A	MB89193 MB89193A	MB89195 MB89195A	MB89P195 MB89P195A	MB89PV190 MB89PV190A
Classification	N	lask ROM product	S	One-time product	For development and evaluation
ROM size	4 K × 8 bits (internal mask ROM)	8 K × 8 bits (internal mask ROM)	16 K × 8 bits (internal mask ROM)	16 K × 8 bits (internal PROM, to be programmed with general- purpose EPROM programmer)	32 K × 8 bits (external ROM)
RAM size	128 × 8 bits		256×	8 bits	
CPU functions	The number of basic instructions: 136 Instruction bit length: 8 bits Instruction length: 1 to 3 bytes Data bit length: 1, 8, and 16 bits Minimum execution time: 0.95 µs at 4.2 MHz Interrupt processing time: 8.57 µs at 4.2 MHz				
Ports	Output port (N channel open drain): 4 (also serves as peripherals for MB89190/series) or 6 (for MB89190 series) I/O port (CMOS): 16 (also serves as peripherals) Total: 20 or 22				
Timer counter	2 channels of 8-bit timer counter or one 16-bit event counter (operation clock: 1.9 μs, 30.4 μs, and 487.6 μs at 4.2 MHz, and external clock)				
Serial I/O	8 bits LSB/MSB first selectable Transfer clock (external, 1.9 μs, 7.6 μs, 30.4 μs at 4.2 MHz)				
A/D converter (MB89190A series only)	8 bits x 8 channels A/D conversion mode (conversion time: 41.9 μs at 4.2 MHz) Sense mode (conversion time: 11.9 μs at 4.2 MHz) Capable of continuous activation by an internal timer. Reference voltage input				

(Continued)

(Continued)

Part number Item	MB89191 MB89191A	MB89193 MB89193A	MB89195 MB89195A	MB89P195 MB89P195A	MB89PV190 MB89PV190A
External interrupt 1	3 independent channels (selectable edge, interrupt vector, and interrupt source flag) Rising/falling/both edge selectable Used for wake-up from stop/sleep mode. (Edge detection is also permitted in the stop mode.)				
External interrupt 2 (Wake-up function)	8 channels (low-level interrupt only)				
Remote-control transmitting frequency generator	The pulse width and cycle are software-programmable.				
Standby mode	Sleep mode and stop mode				
Process	CMOS				
Operating voltage*	2.2 V to 6.0 V 2.7 V to 6.0 V				
EPROM for use		MBM27C256A- 20TVM			

^{*:} Varies with conditions such as operating frequencies (see "■ Electrical Characteristics.") It differs from the operating voltage of an A/D converter.

■ PACKAGE AND CORRESPONDING PRODUCTS

Package	MB89191 MB89191A MB89193 MB89193A MB89195 MB89195A	MB89P195 MB89P195A	MB89PV190 MB89PV190A
DIP-28P-M05	0	0	×
DIP-28P-M03	0	×	×
FPT-28P-M17	0	0	×
MQP-48C-P01	×	×	O*

○ : Available × : Not available

*: A socket (manufacturer: Sun Hayato Co., Ltd.) for pin pitch conversion is available.

48QF-28SOP-8L: (MQP-48C-P01) \rightarrow for conversion to FPT-28P-M17

Inquiry: Sun Hayato Co., Ltd.: TEL (81)-3-3986-0403 FAX (81)-3-5396-9106

Note: For more information on each package, see "■ Package Dimensions."

■ DIFFERENCES AMONG PRODUCTS

1. Memory Size

Before evaluating using the piggyback model, verify its difference from the model that will actually be used. Take particular care on the following points:

- On the MB89191/191A, addresses 0140H to 0180H cannot be used for register banks.
- The stack area, etc., is set in the upper limit of the RAM.

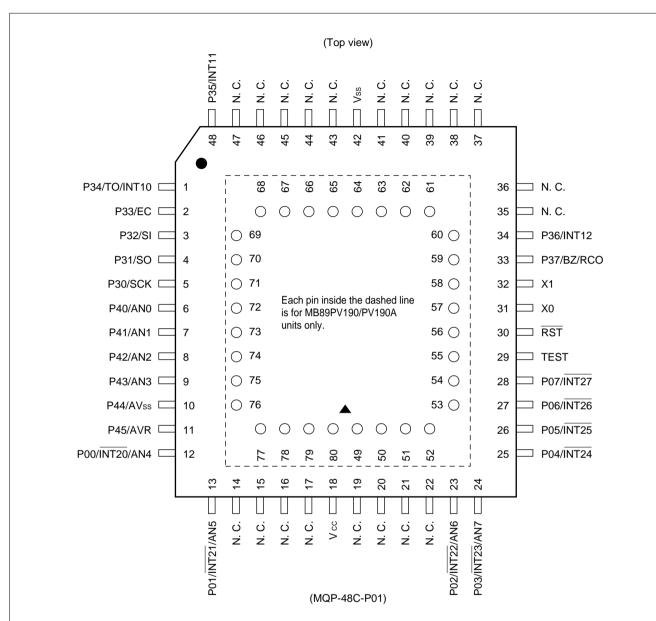
2. Current Consumption

- In the case of MB89PV190/PV190A, added is the current consumed by the EPROM which is connected to the top socket.
- When operated at low speed, the products with an OTPROM (EPROM) will consume more current than the products with a mask ROM.

However, the same is current consumption in the sleep/stop mode. (For more information, see "■ Electrical Characteristics.")

3. Mask Options

Functions that can be selected as options and how to designate these options vary with product.


Before using options, check "■ Mask Options."

Take particular care on the following points:

- Pull-up resistor optional cannot be set for P00 to P03, and P40 to P45 on the MB89191A/193A/195A/P195A.
- The power-on reset option is fixed as "enabled" for MB89P195/P195A.
- Options are fixed on the MB89PV190/PV190A.

■ PIN ASSIGNMENT

• Pin assignment on the package top (MB89PV190/PV190A only)

Pin no.	Pin name	Pin no.	Pin name	Pin no.	Pin name	Pin no.	Pin name
49	V _{PP}	57	N.C.	65	04	73	ŌĒ
50	A12	58	A2	66	O5	74	N.C.
51	A7	59	A1	67	O6	75	A11
52	A6	60	A0	68	07	76	A9
53	A5	61	01	69	O8	77	A8
54	A4	62	02	70	CE	78	A13
55	A3	63	O3	71	A10	79	A14
56	N.C.	64	Vss	72	N.C.	80	Vcc

N.C.: Internally connected. Do not use.

To Top / Lineup / Index MB89190/190A Series

■ PIN DESCRIPTION

Pin n	Pin no.			
SOP*1, DIP*2 SH-DIP*3	MQFP*4	Pin name	Circuit type	Function
7	31	X0	А	Clock oscillation pins
8	32	X1		
5	29	TEST	В	Test input pin Connect directly to Vss.
6	30	RST	С	Reset I/O pin This pin consists of an N-ch open-drain output with a pull-up resistor and of hysteresis input. A low level is output from this pin by internal source. The internal circuit is initialized by the input of a low level.
24 to 27	12 13, 23, 24	P00/INT20/AN4 to P03/INT23/AN7	G	General-purpose I/O ports Also serve as external interrupt input pins. In the MB89190A series, also serve as analog input pins. External interrupt input is of hysteresis input type.
1 to 4	25 to 28	P04/INT24 to P07/INT27	D	General-purpose I/O ports Also serve as external interrupt input. External interrupt input is of hysteresis input type.
17	5	P30/SCK	D	General-purpose I/O port Also serves as clock I/O for the 8-bit serial I/O interface. The serial I/O clock input is of hysteresis input type with a built-in noise filter.
16	4	P31/SO	E	General-purpose I/O port Also serves as a serial I/O data output pin.
15	3	P32/SI	D	General-purpose I/O port Also serves as a serial I/O data input pin. The serial I/O data input is of hysteresis input type with a built-in noise filter.
14	2	P33/EC	D	General-purpose I/O port Also serves as an external clock input pin for the 8- bit timer/counter. External clock input of the 8-bit timer/counter is hysteresis input type with a built-in noise filter.
13	1	P34/TO/ INT10	D	General-purpose I/O port Also serves as the overflow output and external interrupt input for the 8-bit timer/counter. External interrupt input is of hysteresis input type with a built-in noise filter.

*1: FPT-28P-M17

*2: DIP-28C-M05

*3: DIP-28P-M03

*4: MQP-48C-P01

(Continued)

(Continued)

Pin n	10.			
SOP*1, DIP*2 SH-DIP*3	MQFP*4	Pin name	Circuit type	Function
12	48	P35/INT11	D	General-purpose I/O port
11	34	P35/INT12		Also serve as external interrupt input pins. External interrupt input is of hysteresis input type with a built-in noise filter.
10	33	P37/BZ/RCO	E General-purpose I/O port Also serves as a buzzer output pin and remote control output pin.	
18 to 21	6 to 9	P40/AN0 to P43/AN3	F	N-ch open-drain output ports Also serve as analog input pins for the A/D converter.
23	11	P45/AVR	F In the MB89190A series, also serves as a reference voltage input pin for the A/D conver In the MB89190 series, serves as an N-ch op drain output port.	
22	10	P44/AVss	F	In the MB89190A series, also serves as a power pin for the A/D converter, and should be applied the same voltage as Vss to. In the MB89190 series, also serves as an N-ch open-drain output port.
28	18	Vcc	_	Power supply pin
9	42	Vss	_	Power supply (GND) pin

*1: FPT-28P-M17

*2: DIP-28P-M05

*3: DIP-28P-M03

*4: MQP-48C-P01

To Top / Lineup / Index MB89190/190A Series

• External EPROM pins (MB89PV190/PV190A)

Pin no.	Pin name	I/O	Function
49	VPP	0	"H" level output pin
79	A14	0	Address output pins
78	A13		
50	A12		
75	A11		
71	A10		
76	A9		
77	A8		
51	A7		
52	A6		
53	A5		
54	A4		
55	A3		
58	A2		
59	A1		
60	A0		
61	01	I	Data input pins
62	02		
63	O3		
65	O4		
66	O5		
67	O6		
68	07		
69	O8		
70	CE	0	ROM chip enable pin
		_	Outputs "H" during standby.
73	ŌĒ	0	ROM output enable pin
			Outputs "L" at all times.
80	Vcc	0	EPROM power pin
64	Vss	0	Power supply (GND) pin

■ I/O CIRCUIT TYPE

Туре	Circuit	Remarks
A	Standby control signal	 Oscillation feedback registor of approximately 1 MΩ at 5 V When crystal and ceramic oscillators are selected optionally
	Standby control signal	When CR oscillation is selected optionally
В		
С	R P-ch	 Output pull-up resistor (P-ch): Approx. 50 kΩ at 5 V Hysteresis input
D	P-ch P-ch N-ch	CMOS output CMOS input Hysteresis input (resource input)
	-	Pull-up resistor optional

(Continued)

To Top / Lineup / Index MB89190/190A Series

(Continued)

Туре	Circuit	Remarks
E	P-ch N-ch	CMOS output CMOS input Pull-up resistor optional
F	R P-ch N-ch Analog input	N-ch open-drain output Analog input Pull-up resistor optional (MB89190 series only)
G	P-ch N-ch Analog input	 CMOS output CMOS input Hysteresis input (resource input) Analog input Pull-up resistor optional (MB89190 series only)

■ HANDLING DEVICES

1. Preventing Latch-up

Latchup may occur on CMOS ICs if voltage higher than Vcc or lower than Vss is applied to input or output pins other than medium- and high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in "Electrical Characteristics" is applied between Vcc to Vss.

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

Also, take care to prevent the analog power supply (AVcc and AVR) and analog input from exceeding the digital power supply (Vcc) when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to pull-up or pull-down resistor.

3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters

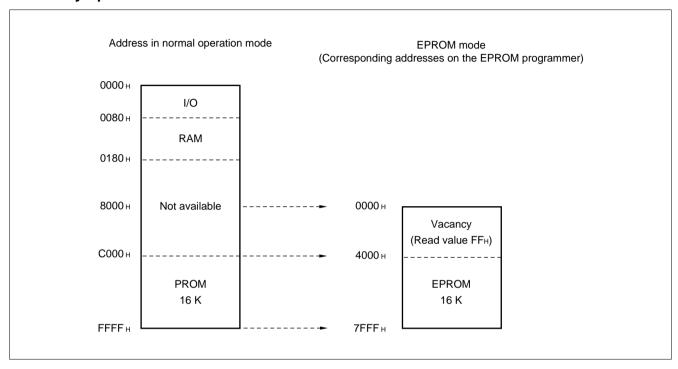
Connect to be AVcc=DAVC=Vcc and AVss=AVR=Vss even if the A/D and D/A converters are not in use.

4. Treatment of N.C. Pin

Be sure to leave (internally connected) N.C. pins open.

5. Power Supply Voltage Fluctuations

Although operation is assured within the rated range of Vcc power supply voltage, a rapid fluctuation of the voltage could cause malfunctions within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that Vcc ripple fluctuations (P-P value) will be less than 10% of the standard Vcc value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched.

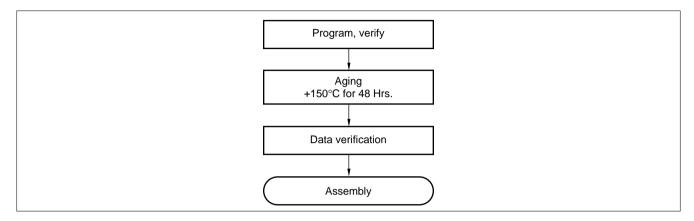

6. Precautions when Using an External Clock

Even when an external clock is used, oscillation stabilization time is required for power-on reset (optional) and release from stop mode.

■ PROGRAMMING TO PROM ON THE MB89P195/P195A

The MB89P195/P195A can program data in the internal PROM using a dedicated conversion adaptor and specified general-purpose EPROM programmer.

1. Memory Space


• Programming procedure

- (1) Load program data into the ROM programmer at addresses 4000H to 7FFFH. (Addresses 0C000H to 0FFFFH in the operation mode correspond to 4000H to 7FFFH in ROM programmer. See the illustration above.)
- (2) Set the data at addresses 0000H to 3FFFH of the programmer ROM in the ROM programmer, to FFH.
- (3) Program in the successive-address write mode of the ROM programmer.

Note: Program must be started at the address 00000_H. For details, contact our Sales Division.

2. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM microcontroller program.

3. Programming Yield

Due to its nature, bit programming test can't be conducted as Fujitsu delivery test. For this reason, a programming yield of 100% cannot be assured at all times.

4. EPROM Programmer Socket Adapter

			Recommended programmer manufacturer and programmer name				
Don't ma	Deelsess	Compatible socket adapter	Minato Electronics Inc.	D	ata I/O Co., Lt	d.	
Part no.	Package	Sun Hayato Co., Ltd.	MODEL1890A (ver.2.2) + OU-910 (ver.4.1)	UNISITE (ver.5.0 or later)	3900 (ver.2.8 or later)	2900 (ver.3.8 or later)	
MB89P195	DIP-28	ROM-28DP- 28DP-8L	_		_		
MB89P195PF MB89P195APF	SQP-28	ROM-28SOP- 28DP-8L	Recommended		Recommended	I	

Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403

FAX: (81)-3-5396-9106

Minato Electronics Inc.: TEL: USA (1)-916-348-6066

JAPAN (81)-45-591-5611

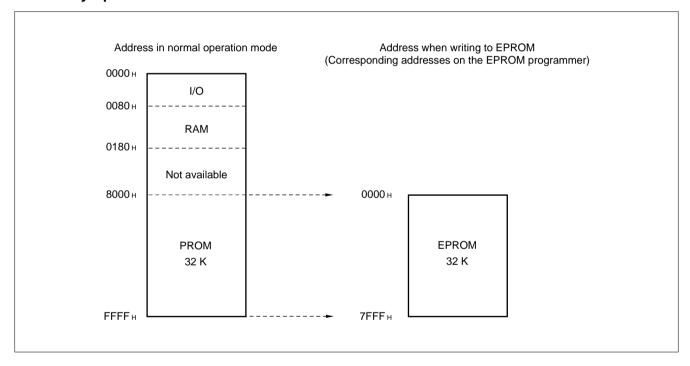
Data I/O Co., Ltd.:TEL: USA/ASIA (1)-206-881-6444

EUROPE (49)-8-985-8580

■ PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE

1. EPROM for Use

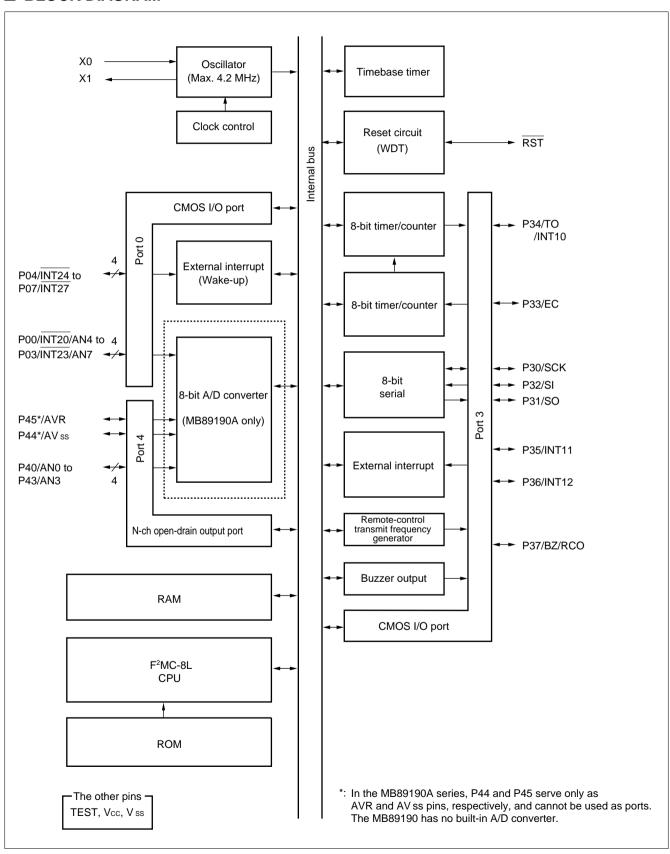
MBM27C256A-20TVM


2. Programming Socket Adapter

To program to the EPROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato Co., Ltd.) below.

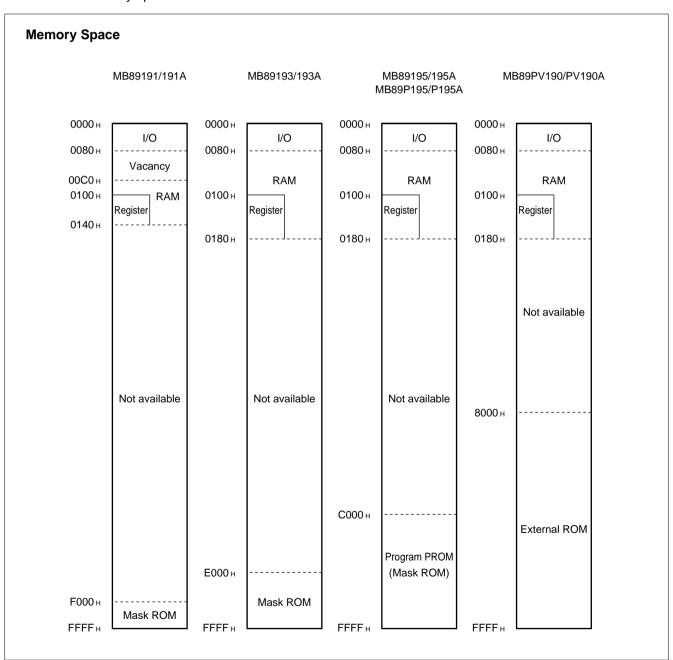
Package	Adapter socket part number	
LCC-32	ROM-32LC-28DP-YS	

Inquiry: Sun Hayato Co., Ltd.: TEL (81)-3-3986-0403 FAX (81)-3-5396-9106


3. Memory Space

4. Programming to the EPROM

- (1) Set the EPROM programmer for MBM27C256A.
- (2) Load program data into the EPROM programmer at 0006H to 7FFFH.
- (3) Program to 0000H to 7FFFH with the EPROM programmer.


■ BLOCK DIAGRAM

■ CPU CORE

1. Memory Space

The microcontrollers of MB89190/190A series offer a 64 Kbytes of memory for storing all of I/O, data, and program areas. The I/O area is allocated from the lowest address. The data area is allocated immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is allocated from exactly the opposite end of I/O area, that is, the highest address. The tables of interrupt reset vectors, and vector call instructions are allocated from the highest address within the program area. The memory space of the MB89190/190A series is structured below:

2. Registers

The F²MC-8L family has two types of registers; dedicated hardware registers and general-purpose memory registers. The following dedicated registers are provided:

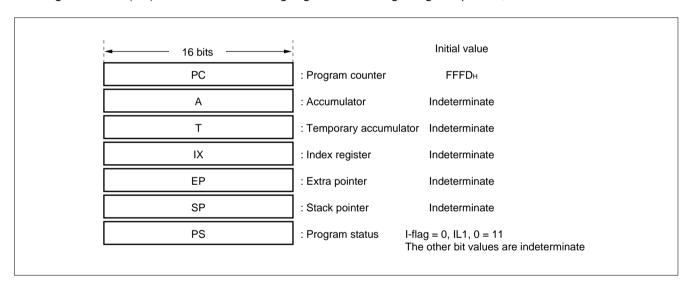
Program counter (PC): A 16-bit-long register for indicating the instruction storage positions

Accumulator (A): A 16-bit-long temporary register for arithmetic operations, etc. When the

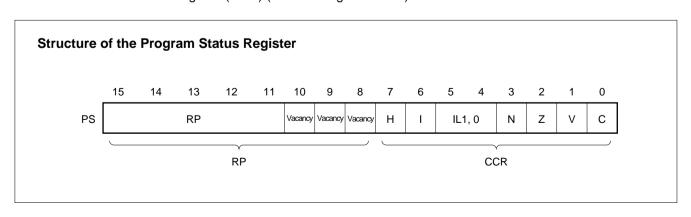
instruction is an 8-bit data processing instruction, the lower byte is used.

Temporary accumulator (T): A 16-bit-long register which is used for arithmetic operations with the accumulator.

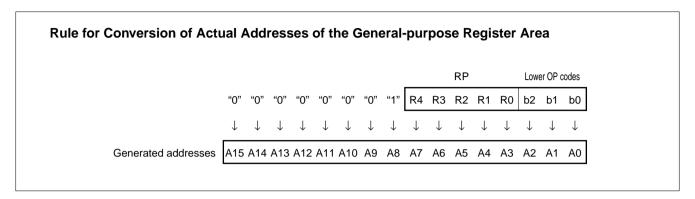
When the instruction is an 8-bit data processing instruction, the lower byte is


used.

Index register (IX): A 16-bit-long register for index modification


Extra pointer (EP): A 16-bit-long pointer for indicating a memory address

Stack pointer (SP): A 16-bit-long pointer for indicating a stack area


Program status (PS): A 16-bit-long register for storing a register pointer, a condition code

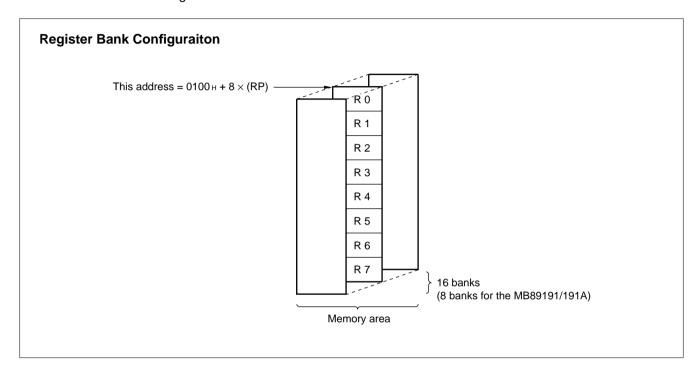
The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR) (see the diagram below).

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data, and bits for control of CPU operations at the time of an interrupt.

- H-flag: Set to '1' when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared to '0' otherwise. This flag is for decimal adjustment instructions.
- I-flag: Interrupt is enabled when this flag is set to '1'. Interrupt is disabled when the flag is cleared to '0'. Cleared to '0' at the reset.
- IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	IL0	Interrupt level	High-low
0	0	1	High
0	1	I	†
1	0	2	
1	1	3	Low


- N-flag: Set to '1' if the MSB becomes '1' as the result of an arithmetic operation. Cleared to '0' otherwise.
- Z-flag: Set to '1' when an arithmetic operation results in 0. Cleared to '0' otherwise.
- V-flag: Set to '1' if the complement on '2' overflows as a result of an arithmetic operation. Cleared to '0' if the overflow does not occur.
- C-flag: Set to '1' when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to '0' otherwise. Set to '1' the shift-out value in the case of a shift instruction.

The following general-purpose registers are provided:

General-purpose registers: An 8-bit-long register for storing data

The general-purpose registers are of 8 bits and located in register banks of the memory. One bank contains eight registers and up to a total of 16 banks can be used on the MB89190/190A (8 banks on MB89191/191A). The bank currently in use is indicated by the register bank pointer. (RP)

Note: The number of register banks that can be used varies with the RAM size.

To Top / Lineup / Index MB89190/190A Series

■ I/O MAP

Address	Read/write	Register name	Register description
00н	(R/W)	PDR0	Port 0 data register
01н	(W)	DDR0	Port 0 data direction register
02н	(R/W)	ENI0	Port 0 input enable register
03н to 07н			Vacancy
08н	(R/W)	STBC	Standby control register
09н	(R/W)	WDTC	Watchdog control register
ОАн	(R/W)	TBTC	Time-base timer control register
0Вн			Vacancy
0Сн	(R/W)	PDR3	Port 3 data register
0Дн	(W)	DDR3	Port 3 data direction register
0Ен	(R/W)	PDR4	Port 4 data register
0Fн	(R/W)	BUZR	Buzzer register
10н to 13н			Vacancy
14н	(R/W)	RCR1	Remote-control transmit control register 1
15н	(R/W)	RCR2	Remote-control transmit control register 2
16н			Vacancy
17н			Vacancy
18н	(R/W)	T2CR	Timer 2 control register
19н	(R/W)	T1CR	Timer 1 control register
1Ан	(R/W)	T2DR	Timer 2 data register
1Вн	(R/W)	T1DR	Timer 1 data register
1Сн	(R/W)	SMR	Serial mode register
1Dн	(R/W)	SDR	Serial data register
1Ен			Vacancy
1Fн			Vacancy
20н	(R/W)	ADC1	A/D converter control register 1
21н	(R/W)	ADC2	A/D converter control register 2
22н	(R/W)	ADCD	A/D converter data register
23н	(R/W)	EIC1	External interrupt control register 1
24н	(R/W)	EIC2	External interrupt control register 2
25н to 31н			Vacancy
32н	(R/W)	EIE2	External interrupt 2 enable register

(Continued)

(Continued)

Address	Read/write	Register name	Register description
33н	(R/W)	EIF2	External interrupt 2 flag register
34н to 7Вн			Vacancy
7Сн	(W)	ILR1	Interrupt level register 1
7Dн	(W)	ILR2	Interrupt level register 2
7Ен	(W)	ILR3	Interrupt level register 3
7F H			Vacancy

Note: Do not use vacancies.

To Top / Lineup / Index MB89190/190A Series

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Rating

(AVss = Vss = 0.0 V)

Davamatav	Cramb of	Va	lue	I Imia	Domonko
Parameter	Symbol	Min.	Max.	Unit	Remarks
	Vcc	Vss - 0.3	Vss + 7.0	V	
Power supply voltage	AVR	Vss-0.3	Vss + 7.0	V	Must not exceed Vcc + 0.3 V. MB89190A series only
EPROM program voltage	V _{PP}	Vss-0.3	Vss + 13.0	V	
Input voltage	Vı	Vss-0.3	Vcc + 0.3	V	
Output voltage	Vo	Vss-0.3	Vcc + 0.3	V	
"L" level maximum output	l _{OL1}	_	10	mA	Except P33 and P34
current	I _{OL2}	_	20	mA	P33, P34
"L" level average output current	lolav1	_	4	mA	Except P33 and P34 Average value (operating current × operation rate)
L level average output current	lolav2	_	8	mA	P33 and P34 Average value (operating current × operation rate)
"L" level total average output current	ΣΙοιαν	_	20	mA	Average value (operating current × operation rate)
"L" level total maximum output current	ΣΙοι	_	100	mA	
"H" level maximum output	І он1	_	-10	mA	Except P33, P34, and P37
current	10н2	_	-20	mA	P33, P34, P37
"H" level average output	loнav1	_	-2	mA	Except P33, P34, and P37 Average value (operating current × operation rate)
current	lohav2	_	-4	mA	Except P33, P34, and P37 Average value (operating current × operation rate)
"H" level total average output current	ΣΙοнαν	_	-10	mA	Average value (operating current × operation rate)
"H" level total maximum output current	ΣІон	_	-30	mA	
Power consumption	P _D	_	200	mW	
Operating temperature	Та	-40	+85	°C	
Storage temperature	Tstg	-55	+150	°C	

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

(Vss = 0.0 V)

Parameter	Symbol	Va	lue	Unit	Remarks
Farameter	Symbol	Min.	Max.	Offic	Kemarks
		2.2*	6.0*	V	Normal operation assurance range* MB89191/191A/193/193A/195/195A
Power supply voltage	Vcc	2.7*	6.0*	V	Normal operation assurance range* MB89P195/P195A/PV190/PV190A
		1.5	6.0	V	Retains the RAM state in the stop mode
A/D converter reference input voltage	AVR	0.0	Vcc	V	
Operating temperature	TA	-40	+85	°C	

^{*:} These values vary with the operation frequency and the assured analog operation range. See Figure 1 and "5. A/D Converter Electrical Characteristics."

Figure 1 Operating Voltage vs. Main Clock Operating Frequency

Figure 1 indicates the operating frequency of the external oscillator at an instruction cycle of 4/Fc.

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

3. DC Characteristics

 $(Vcc = +5.0 \text{ V}, \text{AVss} = \text{Vss} = 0.0 \text{ V}, \text{Ta} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Dorometer	Cumbal	Pin	Condition	,	Value			Domarko
Parameter	Symbol	Pin	Condition	Min.	Тур.	Max.	Unit	Remarks
"H" level	VIH	P00 to P07, P30 to P37, TEST	_	0.7 Vcc	_	Vcc + 0.3	٧	
input voltage	Vihs	RST, INT10 to INT12, EC, SCK, SI, INT20 to INT27	_	0.8 Vcc	_	Vcc + 0.3	V	
"L" level	VıL	P00 to P03, P33 to P36, TEST	_	Vss - 0.3	_	0.3 Vcc	٧	
input voltage	VILS	RST, INT10 to INT12, EC, SCK, SI, INT 20 to INT27	_	Vss - 0.3	_	0.2 Vcc	V	
Open-drain output pin applied voltage	VD	P40 to P44	_	Vss - 0.3		Vss + 0.3	V	
"H" level	V _{OH1}	P00 to P07, P30 to P32, P35, P36	lон = −2.0 mA	2.4		_	V	
output voltage	V _{OH2}	P33, P34	Iон = -15 mA	2.4	_	_	V	
	Vонз	P37	Iон = -7.0 mA	2.4	_	_	V	
"L" level output voltage	Vol1	P00 to P07, P40 to P45, P30 to P32, P35 to P37	IoL = 1.8 mA	_		0.4	V	
	V _{OL2}	RST	IoL = 4.0 mA	_		0.4	V	
	V _{OL3}	P33, P34	IoL = 12 mA	_	_	0.4	V	
Input leakage current (Hi-z output leakage current)	ILI1	P00 to P07, P30 to P37, TEST	0.0 V < V1 < Vcc	_	_	±5	μА	Without pull-up resistor
Open-drain output leakage current (Off state)	I _{LD1}	P40 to P45	0.0 V < V1 < Vcc	_	_	±1	μА	Without pull-up resistor

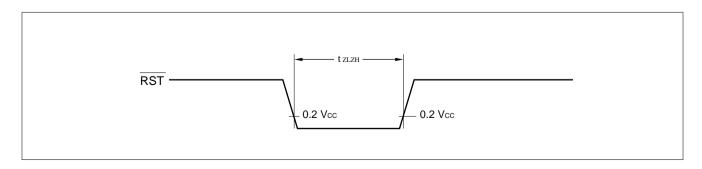
(Continued)

(Continued)

 $(V_{CC} = 5.0 \text{ V}, \text{AVss} = \text{Vss} = 0.0 \text{ V}, \text{T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

			(V C C =	5.0 V, AV	33 – V 33 -	- U.U V,	- -	0 0 10 +03 0
Parameter	Symbol	Pin	Condition		Value		Unit	Remarks
Farameter	Symbol	FIII	Condition	Min.	Тур.	Max.	Oilit	Remarks
Pull-up resistance	Rpull	P00 to P07, P30 to P37, P40 to P45, RST	V _I = 0.0 V	25	50	100	kΩ	
I	Icc		Fc = 4.2 MHz	_	5	10	mA	MB89191/ 191A/193/ 193A/195/ 195A/PV190/ PV190A
Power supply		Vcc		_	7	12	mA	MB89P195/ P195A
voltage*	Iccs		Fc = 4.2 MHz	_	3	7	mA	Sleep mode
	Іссн		T _A = +25 °C	_	_	1	μΑ	Stop mode
	Icca		Fc = 4.2 MHz During A/D converter	_	6	13	mA	MB89191A/ 193A/195A/ PV190A
			operation	_	8	15	mA	MB89P195A
Input capacitance	Cin	Except AVR, AVss, Vcc, and Vss	f = 1 MHz	_	10		pF	

^{* :} For the MB89PV190/PV190A, the current consumption of a connected EPROM and ICE is not included. The mesurement condition of the power supply current are set as Vcc = 5.0 V with an external clock.

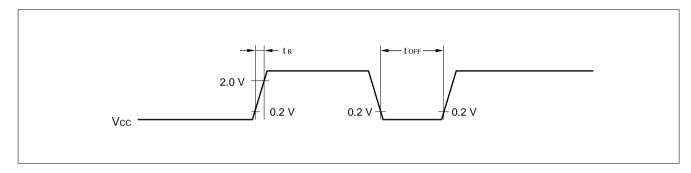

4. AC Characteristics

(1) Reset Timing

 $(Vcc = +5.0 V\pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Condition	Valu	ue	Unit	Remarks
Farameter	Syllibol	Condition	Min.	Max.	Offic	Remarks
RST "L" pulse width	t zlzh	_	16 t xcyl	_	ns	

Note: txcyL is the oscillation period (1/Fc) input to the X0 pin.

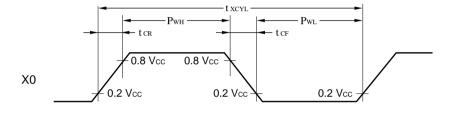

(2) Power-on Reset

 $(AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

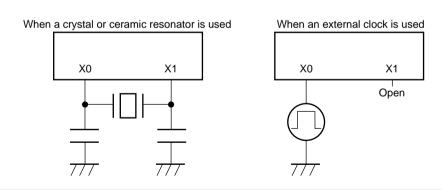
Parameter	Symbol	Condition	Val	lue	Unit	Remarks
Farameter	Syllibol	Condition	Min.			Kemarks
Power supply rising time	t R		_	50	ms	
Power supply cut-off time	toff	_	1		ms	Due to repeated operations

Note: Make sure that power supply rises within the oscillation stabilization time selected.

If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.



(3) Clock Timings

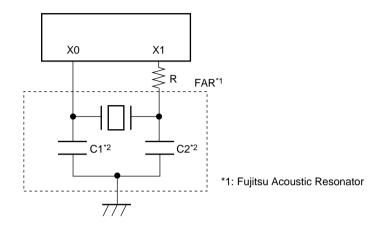

 $(AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
raiametei	Symbol	Pili Collaiti		Min.	Max.	Offic	Remarks
Clock frequency	Fc	X0, X1	_	1	4.2	MHz	
Clock cycle time	txcyL	X0, X1	_	238	1000	ns	
Input clock pulse width	P _{WH} P _{WL}	X0	_	20	_	ns	External clock
Input clock pulse risilng/ falling time	tcr tcr	X0	_	<u> </u>	10	ns	External clock

X0, X1 Timings and Conditions of Applied Voltage

Clock Conditions

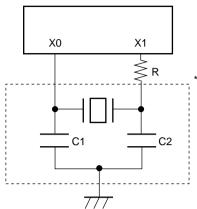
(4) Instruction Cycles


 $(AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Value (typical)	Unit	Remarks
Instruction cycle (minimum execution time)	tinst	4/Fc	μs	t_{inst} = 0.95 μs when operating at Fc = 4.2 MHz

To Top / Lineup / Index MB89190/190A Series

(5) Recommended Resonator Manufacturers


• Sample Application of Piezoelectric Resonator (FAR Series)

FAR part number (built-in capacitor type)	Frequency (MHz)	Dumping resistor	Initial deviation of FAR frequency (TA = +25°C)	Temperature characteristics of FAR frequency (TA = -20°C to +60°C)	Loading capacitors*2
FAR-C4SA-04000-□01M	4.00	200 Ω	±0.5%	±0.5%	Built-in

Inquiry: FUJITSU LIMITED

• Sample Application of Ceramic Resonator

• Mask ROM products

Resonator manufacturer*	Resonator	Frequency (MHz)	C1 (pF)	C2 (pF)	R
	CSA2.00MG040	2.00	100	100	Not required
	CST2.00MG040	2.00	Built-in	Built-in	Not required
Murata Mfg. Co., Ltd.	CSA4.00MG		30	30	Not required
	CST4.00MGW	4.00	Built-in	Built-in	Not required
	CSTCS4.00MG0C5		Built-in	Built-in	Not required
TDK Co. 1+d	CCR4.0MC3	4.00	Built-in	Built-in	Not required
TDK. Co., Ltd.	FCR4.0MC5	4.00	Built-in	Built-in	Not required

· One-time products

Resonator manufacturer*	Resonator	Frequency (MHz)	C1 (pF)	C2 (pF)	R
Murata Mfg. Co., Ltd.	CSA3.20MGCA		30	30	1 kΩ
	CST3.20MGA	3.20	Built-in	Built-in	1 kΩ
	CSA3.20MGA040	3.20	100	100	Not required
	CST3.20MGWA040		Built-in	Built-in	Not required
	CSA3.58MGCA	3.58	30	30	Not required
	CST3.58MGWHA	3.36	Built-in	Built-in	Not required

Inquiry: Murata Mfg. Co., Ltd

- Murata Electronics North America. Inc.: TEL 1-404-436-1300
- Murata Europe Mnagement GmbH: TEL 49-911-66870
- Murata Electronics Singapore (Pte.) Ltd.: TEL 65-758-4233

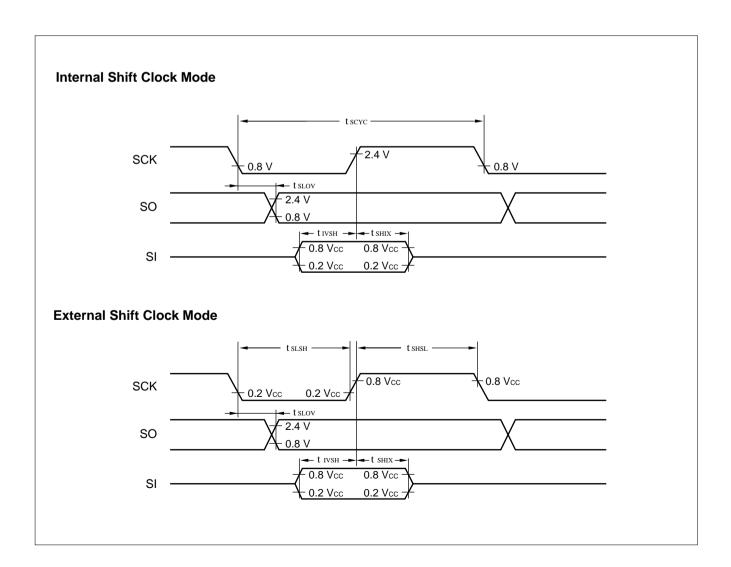
TDK Corporation

• TDK Corporation of America

Chicago Regional Office: TEL 1-708-803-6100

• TDK Electronics Europe GmbH

Components Division: TEL 49-2102-9450

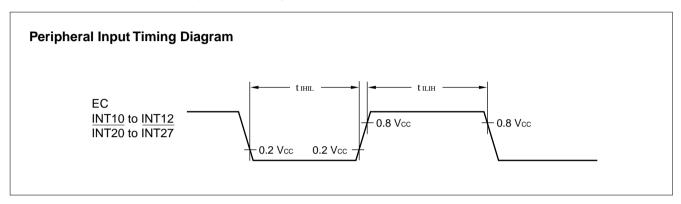

- TDK Singapore (PTE) Ltd.: TEL 65-273-5022
- TDK Hongkong Co., Ltd.: TEL 852-736-2238
- Korea Branch, TDK Corporation: TEL 82-2-554-6633

(6) Serial I/O Timings

 $(Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

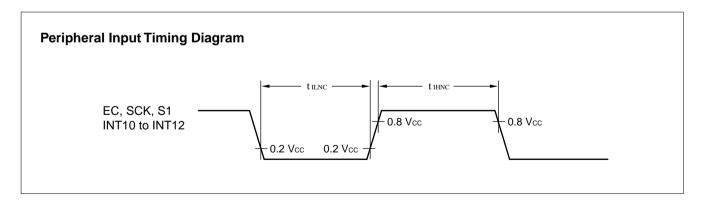
Parameter	Symbol	Pin	Condition	Value		Unit	Remarks	
				Min.	Max.	Oilit	Remarks	
Serial clock cycle time	tscyc	SCK		2 tinst*	_	μs		
$SCK \downarrow \to SO$ time	t sLov	SCK, SO	Internal clock operation	-200	200	ns		
Valid SI → SCK ↑	tıvsh	SI, SCK		1/2 tinst*	_	μs		
SCK $\uparrow \rightarrow$ valid SI hold time	t shix	SCK, SI		1/2 t _{inst} *	_	μs		
Serial clock "H" pulse width	t shsl	SCK, SO SI, SCK	0014		1 tinst*	_	μs	
Serial clock "L" pulse width	tslsh		External	1 tinst*	_	μs		
$SCK \downarrow \to SO$ time	tsLov		clock	0	200	ns		
Valid SI → SCK \uparrow	tıvsh		operation	1/2 tinst*	_	μs		
$SCK \uparrow \to valid \; SI \; hold \; time$	t shix	SCK, SI		1/2 t _{inst} *	_	μs		

^{*:} For information on tinst, see "(4) Instruction Cycles."



(7) Peripheral Input Timings

 $(Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$


Parameter	Symbol	Pin	Value		Unit	Remarks
Farameter	Syllibol	FIII	Min.	Max.	Offic	iveillai ks
Peripheral input "H" pulse width 1	t _{ILIH1}	EC, INT10 to INT12,	2 tinst*	_	μs	
Peripheral input "L" pulse width 1	t _{IHIL1}	INT20 to INT27	2 tinst*	_	μs	

*: For information on tinst, see "(4) Instruction Cycles."

 $(Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin	Value			Unit	Remarks
			Min.	Тур.	Max.	Onn	Iveillaiks
Peripheral input "H" noise limit width	tihnc	EC, SI, SCK INT10 to INT12	7	15	23	ns	
Peripheral input "L" noise limit width	tilnc	EC, SI, SCK INT10 to INT12	7	15	23	ns	

5. A/D Converter Electrical Characteristics (MB89190A Series Only)

(AVcc = Vcc = 3.5 V to 6.0 V, AVss = Vss = 0.0 V, $T_A = -40^{\circ}$ C to $+85^{\circ}$ C)

Parameter	Symbol	Pin	Condition	Value			I ladi	Remarks
				Min.	Тур.	Max.	Unit	Remarks
Resolution			_	_	_	8	bit	
Total error				_	_	±1.5	LSB	
Linearity error	_			_	_	±1.0	LSB	
Differential linearity error				_	_	±0.9	LSB	
Zero transition voltage	Vот	_	AVK = AVCC	AVss -1.0 LSB	AVss +0.5 LSB	AVss +2.0 LSB	mV	
Full-scale transition voltage	V _{FST}			AVR -3.0 LSB	AVR -1.5 LSB	AVR	mV	
Inter channel disparity				_	_	0.5	LSB	
A/D mode conversion time	_			_	44 t _{inst} *	_	μs	
Sense mode conversion time			_	_	12 t inst*	_	μs	
Analog port input current	Iain	A NIO 40 A NIZ	7	_	_	10	μΑ	
Analog input voltage		AN0 to AN7		0	_	AVR	V	
Reference voltage	_			0	_	Vcc	V	
Reference voltage supply current	IR		AVR = Vcc = 5.0 V when A/D conversion is operating	_	100	300	μΑ	
	I RH	AVR		_	_	1	μΑ	

^{*:} For information on tinst, see "(4) Instruction Cycles" in "4. AC Characteristics."

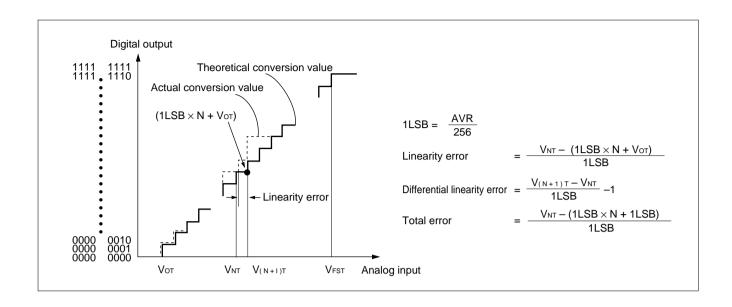
6. A/D Converter Glossary

Resolution

Analog changes that are identifiable by the A/D converter.

When the number of bits is 8, analog voltage can be divided into 28=256.

Linearity error (unit: LSB)

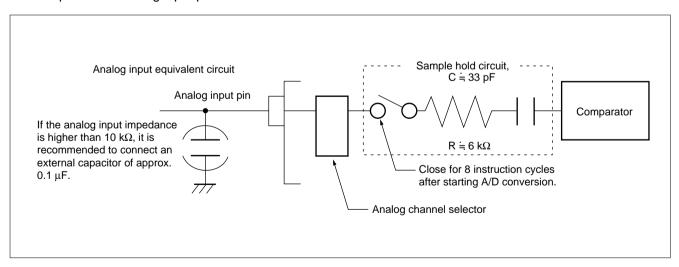

The deviation of the straight line connecting the zero transition point ("0000 0000" \leftrightarrow "0000 0001") with the full-scale transition point ("1111 1110" \leftrightarrow "1111 1111") from actual conversion characteristics.

Differential linearity error (unit: LSB)

The deviation of input voltage needed change the output code by 1 LSB from the theoretical value.

• Total error (unit: LSB)

The difference between theoretical and actual conversion values.

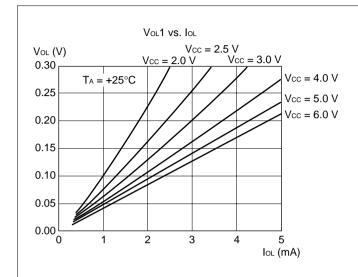

7. Notes on Using A/D Converter

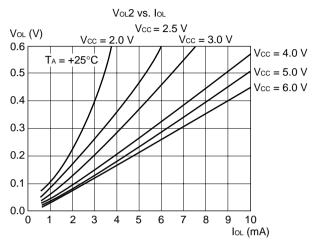
• Input impedance of analog input pins

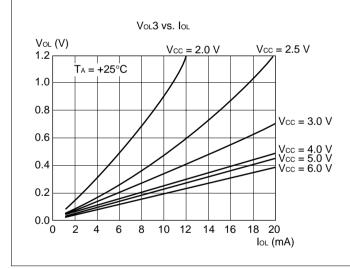
The A/D converter used for the MB89190A series contains a sample hold circuit as illustrated below to fetch analog input voltage into the sample hold capacitor for eight instruction cycles after starting A/D conversion.

For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output impedance of the external circuit low (below 10 k Ω).

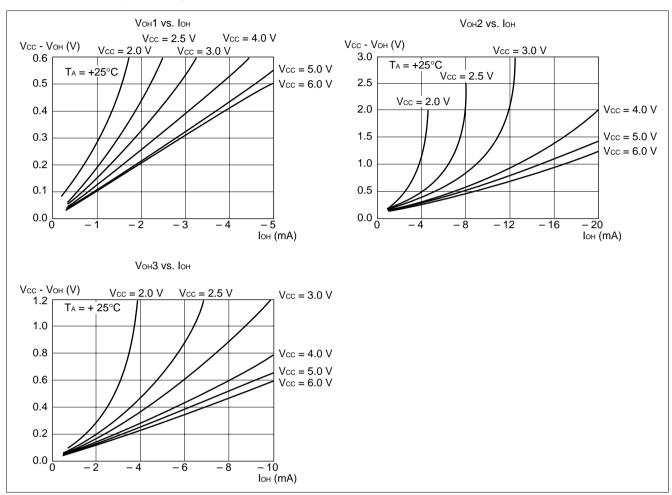
Note that if the impedance cannot be kept low, it is recommended to connect an external capacitor of approx. 0.1 μ F for the analog input pin.

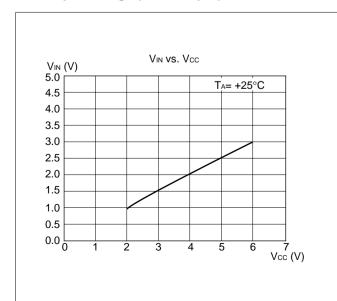


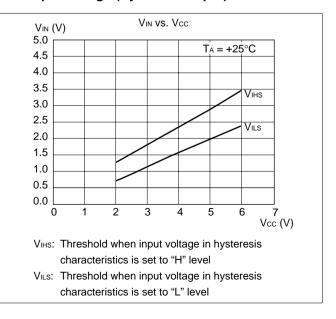

Error

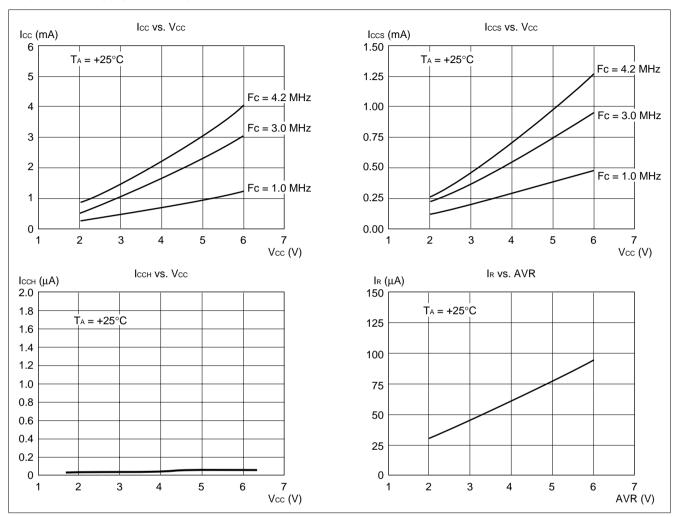

The smaller the AVR-AVss, the greater the error would become relatively.

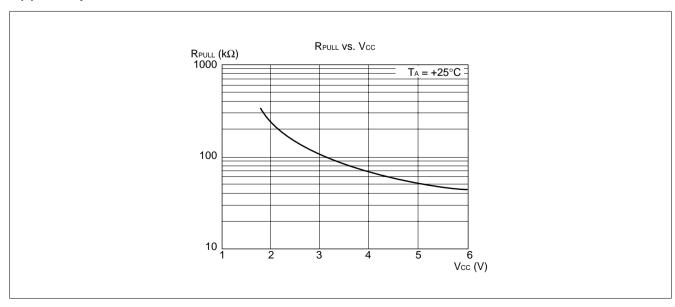
■ EXAMPLE CHARACTERISTICS


(1) "L" Level Output Voltage




(2) "H" Level Output Voltage


(3) "H" Level Input Voltage/"L" Level Input Voltage (CMOS Input)


(4) "H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)

(5) Power Supply Current (External Clock)

(6) Pull-up Resistance

■ INSTRUCTIONS

Execution instructions can be divided into the following four groups:

- Transfer
- · Arithmetic operation
- Branch
- Others

Table 1 lists symbols used for notation for instructions.

Table 1 Instruction Symbols

Symbol	Meaning
dir	Direct address (8 bits)
off	Offset (8 bits)
ext	Extended address (16 bits)
#vct	Vector table number (3 bits)
#d8	Immediate data (8 bits)
#d16	Immediate data (16 bits)
dir: b	Bit direct address (8:3 bits)
rel	Branch relative address (8 bits)
@	Register indirect (Example: @A, @IX, @EP)
A	Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH	Upper 8 bits of accumulator A (8 bits)
AL	Lower 8 bits of accumulator A (8 bits)
Т	Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH	Upper 8 bits of temporary accumulator T (8 bits)
TL	Lower 8 bits of temporary accumulator T (8 bits)
IX	Index register IX (16 bits)

(Continued)

(Continued)

Symbol	Meaning
EP	Extra pointer EP (16 bits)
PC	Program counter PC (16 bits)
SP	Stack pointer SP (16 bits)
PS	Program status PS (16 bits)
dr	Accumulator A or index register IX (16 bits)
CCR	Condition code register CCR (8 bits)
RP	Register bank pointer RP (5 bits)
Ri	General-purpose register Ri (8 bits, i = 0 to 7)
×	Indicates that the very 'x' is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
(×)	Indicates that the contents at address 'x' is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
((×))	The address indicated by the contents at address 'x' is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)

Columns indicate the following:

Mnemonic: Assembler notation of an instruction

~: The number of instructions

#: The number of bytes

Operation: Operation of an instruction

TL, TH, AH: A changed content of the TL, TH and AH when instruction is executed. Symbols in

the column indicate the following:

• "-" indicates no change.

• dH is the 8 upper bits of data described in the column "operation".

• AL and AH must become the contents of AL and AH preceding the instruction executed.

• 00 becomes 00.

N, Z, V, C: Flags of the condition code register. If + is written in this column, the relevant instruction

will change its corresponding flag.

OP code: Code of an instruction. If an instruction is more than one code, it is written according to

the following rule:

Example: 48 to 4F \leftarrow This indicates 48, 49, ... 4F.

Table 2 Transfer Instructions (48 instructions)

Mnemonic	~	#	Operation	TL	TH	АН	NZVC	OP code
MOV dir,A	3	2	$(dir) \leftarrow (A)$	_	_	_		45
MOV @IX +off,A	4	2	$((IX) + off') \leftarrow (A)$	_	_	_		46
MOV ext,A	4	3	$(ext) \leftarrow (A)$	_	_	_		61
MOV @EP,A	3	1	((EP)) ← (A)	_	_	_		47
MOV Ri,A	3	1	(Ri) ← (A)	_	_	_		48 to 4F
MOV A,#d8	2	2	(A) ← d8 ´	AL	_	_	++	04
MOV A,dir	3	2	$(A) \leftarrow (dir)$	AL	_	_	++	05
MOV A,@IX +off	4	2	$(A) \leftarrow ((IX) + off)$	AL	_	_	++	06
MOV A,ext	4	3	$(A) \leftarrow (ext)$	AL	_	_	++	60
MOV A,@A	3	1	$(A) \leftarrow (A)$	AL	_	_	++	92
MOV A,@EP	3	1	(A) ← ((EP))	AL	_	_	++	07
MOV A,Ri	3	1	$(A) \leftarrow (Ri)$	AL	_	_	++	08 to 0F
MOV dir,#d8	4	3	(dír) ← d8	_	_	_		85
MOV @IX +off,#d8	5	3	$((IX) + off) \leftarrow d8$	_	_	_		86
MOV @EP,#d8	4	2	((EP)) ← d8	_	_	_		87
MOV Ri,#d8	4	2	(Ri) ← d8	_	_	_		88 to 8F
MOVW dir,A	4	2	$(dir) \leftarrow (AH), (dir + 1) \leftarrow (AL)$	_	_	_		D5
MOVW @IX +off,A	5	2	$((IX) + off) \leftarrow (AH),$	_	_	_		D6
		_	$((IX) + off + 1) \leftarrow (AL)$					
MOVW ext,A	5	3	$(ext) \leftarrow (AH), (ext + 1) \leftarrow (AL)$	_	_	_		D4
MOVW @EP,A	4	1	$((EP)) \leftarrow (AH), ((EP) + 1) \leftarrow (AL)$	_	_	_		D7
MOVW EP,A	2	1	$(EP) \leftarrow (A)$	_	_	_		E3
MOVW A,#d16	3	3	(A) ← d16	AL	AH	dH	++	E4
MOVW A,dir	4	2	$(AH) \leftarrow (dir), (AL) \leftarrow (dir + 1)$	AL	AH	dH	++	C5
MOVW A,@IX +off	5	2	$(AH) \leftarrow ((IX) + off),$	AL	AH	dH	++	C6
		_	$(AL) \leftarrow ((IX) + off + 1)$,	/	<u> </u>		
MOVW A,ext	5	3	$(AH) \leftarrow (ext), (AL) \leftarrow (ext + 1)$	AL	AH	dH	++	C4
MOVW A,@A	4	1	$(AH) \leftarrow (A), (AL) \leftarrow (A) + 1$	AL	AH	dH	++	93
MOVW A,@EP	4	1	$(AH) \leftarrow ((EP)), (AL) \leftarrow ((EP) + 1)$	AL	AH	dH	++	C7
MOVW A,EP	2	1	$(A) \leftarrow (EP)$	_		dH		F3
MOVW EP,#d16	3	3	(EP) ← d16	_	_	_		E7
MOVW IX,A	2	1	$(IX) \leftarrow (A)$	_	_	_		E2
MOVW A,IX	2	1	$(A) \leftarrow (IX)$	_	_	dH		F2
MOVW SP,A	2	1	$(SP) \leftarrow (A)$	_	_	_		E1
MOVW A,SP	2	1	(A) ← (SP)	_	_	dH		F1
MOV @A,T	3	1	$(A) \leftarrow (T)$	_	_	_		82
MOVW @A,T	4	1	$(A) \leftarrow (T)$	_	_	_		83
MOVW IX,#d16	3	3	$(IX) \leftarrow d16$	_	_	_		E6
MOVW A,PS	2	1	(A) ← (PS)	_	_	dH		70
MOVW PS,A	2	1	$(PS) \leftarrow (A)$	_	_	_	++++	71
MOVW SP,#d16	3	3	$(SP) \leftarrow d16$	_	_	_		E5
SWAP	2	1	$(AH) \leftrightarrow (AL)$	_	_	AL		10
SETB dir: b	4	2	(dir) : $b \leftarrow 1$	_	_			A8 to AF
CLRB dir: b	4	2	$(dir): b \leftarrow 1$ $(dir): b \leftarrow 0$	_	_	_		A0 to A7
XCH A,T	2	1	$(AL) \leftrightarrow (TL)$	AL	_	_		42
XCHW A,T	3	1	$(A) \leftrightarrow (T)$	AL	AH	dH		43
XCHW A,T	3	1	$(A) \leftrightarrow (I)$ $(A) \leftrightarrow (EP)$	_		dH		F7
XCHW A,IX	3	1	$(A) \leftrightarrow (IX)$	_	_	dH		F6
XCHW A,SP	3	1	$(A) \leftrightarrow (IX)$ $(A) \leftrightarrow (SP)$	_	_	dH		F5
MOVW A,PC	2	1	$(A) \leftrightarrow (BC)$ $(A) \leftarrow (PC)$	_	_	dH		F0
I WOV VV A,I O		'	$(i,i) \leftarrow (i,0)$	_		uii		1 0

Notes: • During byte transfer to A, T ← A is restricted to low bytes.
• Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of F2MC-8 family)

To Top / Lineup / Index MB89190/190A Series

 Table 3
 Arithmetic Operation Instructions (62 instructions)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
ADDC A,Ri	3	1	$(A) \leftarrow (A) + (Ri) + C$	-	_	_	++++	28 to 2F
ADDC A,#d8	2	2	$(A) \leftarrow (A) + d8 + C$	_	_	_	++++	24
ADDC A,dir	3	2	$(A) \leftarrow (A) + (dir) + C$	_	_	-	++++	25
ADDC A,@IX +off	4	2	$(A) \leftarrow (A) + ((IX) + off) + C$	_	_	-	++++	26
ADDC A,@EP	3	1	$(A) \leftarrow (A) + ((EP)) + C$	_	_	-	++++	27
ADDCW A	3	1	$(A) \leftarrow (A) + (T) + C$	_	_	dH	++++	23
ADDC A	2	1	$(AL) \leftarrow (AL) + (TL) + C$	_	_	_	++++	22
SUBC A,Ri	3	1	$(A) \leftarrow (A) - (Ri) - C$	_	_	_	++++	38 to 3F
SUBC A,#d8	2	2	$(A) \leftarrow (A) - d8 - C$	_	_	-	++++	34
SUBC A,dir	3	2	$(A) \leftarrow (A) - (dir) - C$	_	_	-	++++	35
SUBC A,@IX +off	4	2	$(A) \leftarrow (A) - ((IX) + off) - C$	_	_	-	++++	36
SUBC A,@EP	3	1	$(A) \leftarrow (A) - ((EP)) - C$	_	_	l .	++++	37
SUBCW A	3	1	$(A) \leftarrow (T) - (A) - C$	_	_	dH	++++	33
SUBC A	2	1	$(AL) \leftarrow (TL) - (AL) - C$	_	_	-	++++	32
INC Ri	4	1	(Ri) ← (Ri) + 1	_	_	-	+++-	C8 to CF
INCW EP	3	1	(EP) ← (EP) + 1	_	_	-		C3
INCW IX	3	1	$(IX) \leftarrow (IX) + 1$	_	_			C2
INCW A	3	1	$(A) \leftarrow (A) + 1$	_	_	dH	++	C0
DEC Ri	4	1	$(Ri) \leftarrow (Ri) - 1$	_	_	_	+++-	D8 toDF
DECW EP	3	1	(EP) ← (EP) − 1	_	_	_		D3
DECW IX	3	1	$(IX) \leftarrow (IX) - 1$	_	_	- .		D2
DECW A	3	1	$(A) \leftarrow (A) - 1$	_	_	dH	++	D0
MULU A	19	1	$(A) \leftarrow (AL) \times (TL)$	_	_	dH		01
DIVU A	21	1	$(A) \leftarrow (T) / (AL), MOD \rightarrow (T)$	dL	00	00		11
ANDW A	3	1	$(A) \leftarrow (A) \land (T)$	_	_	dH	++R-	63
ORW A	3	1	$(A) \leftarrow (A) \lor (T)$	_	_	dH	++R-	73
XORW A	3	1	$(A) \leftarrow (A) \forall (T)$	-	_	dH	++R-	53
CMP A	2	1	(TL) – (AL)	_	_	_	++++	12
CMPW A	3 2	1	(T) – (A)	_	_	_	++++	13
RORC A	2	1	ightharpoonup C ightharpoonup A ightharpoonup	_	_	_	++-+	03
ROLC A	2	1	$C \leftarrow A \leftarrow$	_	_	_	++-+	02
CMP A,#d8	2	2	(A) -d8	_	_	_	++++	14
CMP A,dir	3	2 2	(A) – (dir)	_	_	_	++++	15
CMP A,@EP	3	1	(A) – ((ÉP))	_	_	_	++++	17
CMP A,@IX +off	4	2	(A) - ((IX) + off)	_	_	_	++++	16
CMP A,Ri	3	1	(A) – (Ri)	_	_	_	++++	18 to 1F
DAA	2	1	Decimal adjust for addition	_	_	_	++++	84
DAS	2	1	Decimal adjust for subtraction	_	_	_	++++	94
XOR A	2	1	$(A) \leftarrow (AL) \ \forall \ (TL)$	_	_	_	++R-	52
XOR A,#d8	2	2	$(A) \leftarrow (AL) \forall d8$	_	_	_	++R-	54
XOR A,dir	3	2	$(A) \leftarrow (AL) \ \forall \ (dir)$	_	_	_	++R-	55
XOR A,@EP	3	1	$(A) \leftarrow (AL) \forall ((EP))$	_	_	_	++R-	57
XOR A,@IX +off	4	2	$(A) \leftarrow (AL) \ \forall \ (IX) + off)$	_	_	_	++R-	56
XOR A,Ri	3	1	$(A) \leftarrow (AL) \forall (Ri)$	_	_	_	++R-	58 to 5F
AND A	2	1	$(A) \leftarrow (AL) \wedge (TL)$	_	_	_	++R-	62
AND A,#d8	2	2	$(A) \leftarrow (AL) \wedge d8$	_	_	_	++R-	64
AND A,dir	3	2	$(A) \leftarrow (AL) \wedge (dir)$	_	_	_	++R-	65
, , , , , , , , , , , , , , , , , , ,			· / · / · / · /					

(Continued)

(Continued)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
AND A,@EP	3	1	(A) ← (AL) ∧ ((EP))	_	_	_	+ + R –	67
AND A,@IX +off	4	2	$(A) \leftarrow (AL) \land ((IX) + off)$	_	_	_	++R-	66
AND A,Ri	3	1	$(A) \leftarrow (AL) \land (Ri)$	_	_	_	++R-	68 to 6F
OR A	2	1	$(A) \leftarrow (AL) \lor (TL)$	_	_	_	++R-	72
OR A,#d8	2	2	$(A) \leftarrow (AL) \lor d8$	_	_	_	++R-	74
OR A,dir	3	2	$(A) \leftarrow (AL) \lor (dir)$	_	_	_	++R-	75
OR A,@EP	3	1	$(A) \leftarrow (AL) \lor ((EP))$	_	_	_	++R-	77
OR A,@IX +off	4	2	$(A) \leftarrow (AL) \lor ((IX) + off)$	_	_	_	++R-	76
OR A,Ri	3	1	$(A) \leftarrow (AL) \lor (Ri)$	_	_	_	++R-	78 to 7F
CMP dir,#d8	5	3	(dir) – d8	_	_	_	++++	95
CMP @EP,#d8	4	2	((EP)) – d8	_	_	_	++++	97
CMP @IX +off,#d8	5	3	((IX) +off) – d8	_	_	_	++++	96
CMP Ri,#d8	4	2	(Ri) – d8	_	_	_	++++	98 to 9F
INCW SP	3	1	(SP) ← (SP) + 1	_	_	_		C1
DECW SP	3	1	(SP) ← (SP) – 1	_	_	_		D1

Table 4 Branch Instructions (17 instructions)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
BZ/BEQ rel	3	2	If $Z = 1$ then $PC \leftarrow PC + rel$	_	_	-		FD
BNZ/BNE rel	3	2	If $Z = 0$ then $PC \leftarrow PC + rel$	_	_	_		FC
BC/BLO rel	3	2	If $C = 1$ then $PC \leftarrow PC + rel$	_	_	_		F9
BNC/BHS rel	3	2	If $C = 0$ then $PC \leftarrow PC + rel$	_	_	_		F8
BN rel	3	2	If N = 1 then PC ← PC + rel	_	_	_		FB
BP rel	3	2	If N = 0 then PC \leftarrow PC + rel	_	_	_		FA
BLT rel	3	2	If V \forall N= 1 then PC \leftarrow PC + rel	_	_	_		FF
BGE rel	3	2	If V \forall N= 0 then PC \leftarrow PC + rel	_	_	_		FE
BBC dir: b,rel	5	3	If (dir: b)= 0 then PC \leftarrow PC + rel	_	_	_	-+	B0 to B7
BBS dir: b,rel	5	3	If (dir: b)= 1 then PC \leftarrow PC + rel	_	_	_	-+	B8 to BF
JMP @A	2	1	(PC) ← (A)	_	_	_		E0
JMP ext	3	3	(PC) ← ext	_	_	_		21
CALLV #vct	6	1	Vector call	_	_	_		E8 to EF
CALL ext	6	3	Subroutine call	_	_	_		31
XCHW A,PC	3	1	$(PC) \leftarrow (A), (A) \leftarrow (PC) + 1$	_	_	dΗ		F4
RET	4	1	Return from subrountine	_	–	_		20
RETI	6	1	Return form interrupt	_	_	_	Restore	30

Table 5 The Other Instructions (9 instructions)

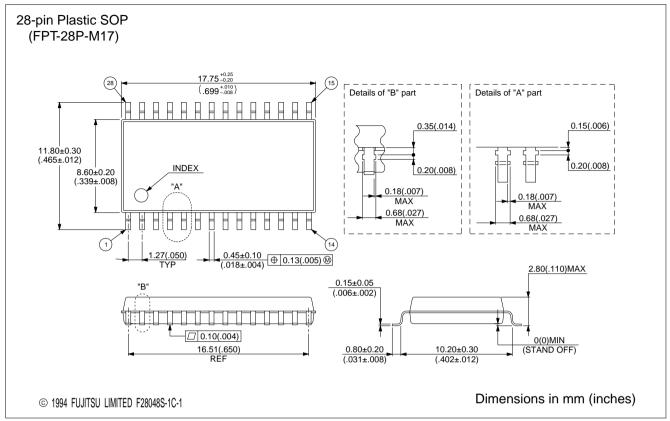
Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
PUSHW A	4	1		_	_	_		40
POPW A	4	1		–	_	dH		50
PUSHW IX	4	1		–	_	_		41
POPW IX	4	1		_	_	_		51
NOP	1	1		_	_	_		00
CLRC	1	1		–	_	_	R	81
SETC	1	1		–	_	_	S	91
CLRI	1	1		–	–	_		80
SETI	1	1		_	_	_		90

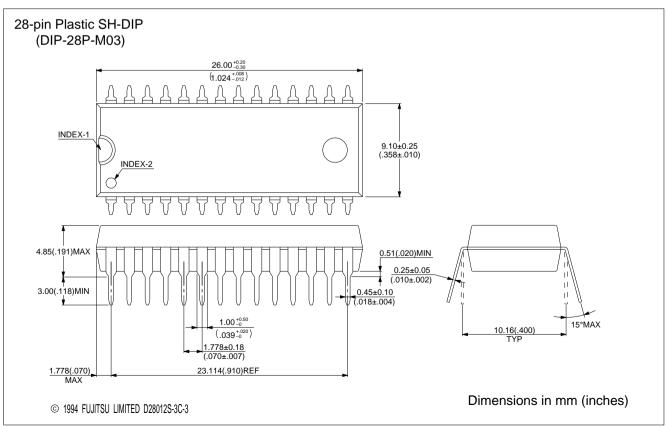
LH	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0	NOP	SWAP	RET	RETI	PUSHW A	POPW A	MOV A,ext	MOVW A,PS	CLRI	SETI	CLRB dir: 0	BBC dir: 0,rel	INCW A	DECW A	JMP @A	MOVW A,PC
1	MULU A	DIVU A	JMP addr16	CALL addr16	PUSHW IX	POPW IX	MOV ext,A	MOVW PS,A	CLRC	SETC	CLRB dir: 1	BBC dir: 1,rel	INCW SP	DECW SP	MOVW SP,A	MOVW A,SP
2	ROLC A	CMP A	ADDC A	SUBC A	XCH A, T	XOR A	AND A	OR A	MOV @A,T	MOV A,@A	CLRB dir: 2	BBC dir: 2,rel	INCW IX	DECW IX	MOVW IX,A	MOVW A,IX
3	RORC A	CMPW A	ADDCW A	SUBCW A	XCHW A, T	XORW A	ANDW A	ORW A	MOVW @A,T	MOVW A,@A	CLRB dir: 3	BBC dir: 3,rel	INCW EP	DECW EP	MOVW EP,A	MOVW A,EP
4	MOV A,#d8	CMP A,#d8	ADDC A,#d8	SUBC A,#d8		XOR A,#d8	AND A,#d8	OR A,#d8	DAA	DAS	CLRB dir: 4	BBC dir: 4,rel	MOVW A,ext	MOVW ext,A	MOVW A,#d16	XCHW A,PC
5	MOV A,dir	CMP A,dir	ADDC A,dir	SUBC A,dir	MOV dir,A	XOR A,dir	AND A,dir	OR A,dir	MOV dir,#d8	CMP dir,#d8	CLRB dir: 5	BBC dir: 5,rel	MOVW A,dir	MOVW dir,A	MOVW SP,#d16	XCHW A,SP
6	MOV A,@IX +d	CMP A,@IX +d	ADDC A,@IX +d	SUBC A,@IX +d	MOV @IX +d,A	XOR A,IX +d	AND A,@IX +d	OR A,@IX +d	MOV @IX +d,#d8	CMP @IX +d,#d8	CLRB dir: 6	BBC dir: 6,rel	MOVW A,@IX +d	MOVW @IX +d,A	MOVW IX,#d16	XCHW A,IX
7	MOV A,@EP	CMP A,@EP	ADDC A,@EP	SUBC A,@EP	MOV @EP,A	XOR A,@EP	AND A,@EP	OR A,@EP	MOV @EP,#d8	CMP @EP,#d8	CLRB dir: 7	BBC dir: 7,rel	MOVW A,@EP	MOVW @EP,A	MOVW EP,#d16	XCHW A,EP
8	MOV A,R0	CMP A,R0	ADDC A,R0	SUBC A,R0	MOV R0,A	XOR A,R0	AND A,R0	OR A,R0	MOV R0,#d8	CMP R0,#d8	SETB dir: 0	BBS dir: 0,rel	INC R0	DEC R0	CALLV #0	BNC rel
9	MOV A,R1	CMP A,R1	ADDC A,R1	SUBC A,R1		XOR A,R1	AND A,R1	OR A,R1	MOV R1,#d8	CMP R1,#d8	SETB dir: 1	BBS dir: 1,rel	INC R1	DEC R1	CALLV #1	BC rel
Α	MOV A,R2	CMP A,R2	ADDC A,R2	SUBC A,R2	MOV R2,A	XOR A,R2	AND A,R2	OR A,R2	MOV R2,#d8	CMP R2,#d8	SETB dir: 2	BBS dir: 2,rel	INC R2	DEC R2	CALLV #2	BP rel
В	MOV A,R3	CMP A,R3	ADDC A,R3	SUBC A,R3	MOV R3,A	XOR A,R3	AND A,R3	OR A,R3	MOV R3,#d8	CMP R3,#d8	SETB dir: 3	BBS dir: 3,rel	INC R3	DEC R3	CALLV #3	BN rel
C	MOV A,R4	CMP A,R4	ADDC A,R4	SUBC A,R4	MOV R4,A	XOR A,R4	AND A,R4	OR A,R4	MOV R4,#d8	CMP R4,#d8	SETB dir: 4	BBS dir: 4,rel	INC R4	DEC R4	CALLV #4	BNZ rel
D	MOV A,R5	CMP A,R5	ADDC A,R5	SUBC A,R5		XOR A,R5	AND A,R5	OR A,R5	MOV R5,#d8	CMP R5,#d8	SETB dir: 5	BBS dir: 5,rel	INC R5	DEC R5	CALLV #5	BZ rel
E	MOV A,R6	CMP A,R6	ADDC A,R6	SUBC A,R6	MOV R6,A	XOR A,R6	AND A,R6	OR A,R6	MOV R6,#d8	CMP R6,#d8	SETB dir: 6	BBS dir: 6,rel	INC R6	DEC R6	CALLV #6	BGE rel
F	MOV A,R7	CMP A,R7	ADDC A,R7	SUBC A,R7	MOV R7,A	XOR A,R7	AND A,R7	OR A,R7	MOV R7,#d8	CMP R7,#d8	SETB dir: 7	BBS dir: 7,rel	INC R7	DEC R7	CALLV #7	BLT rel

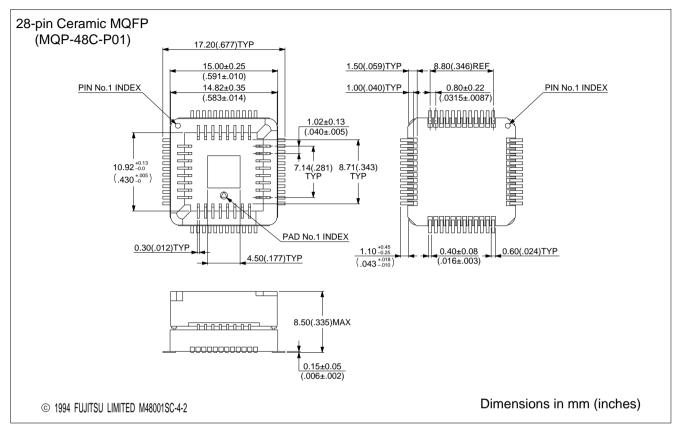
■ MASK OPTION LIST

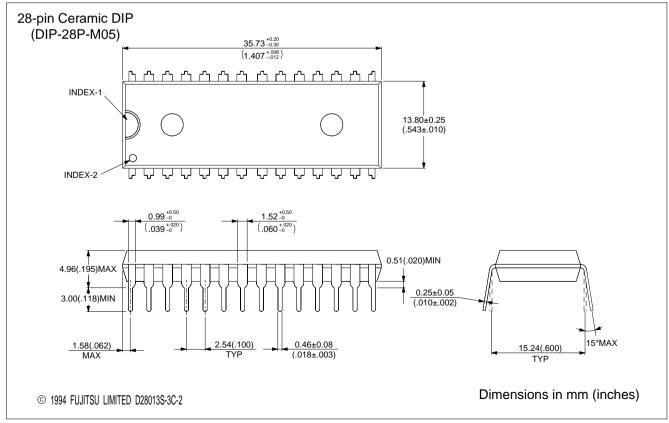
No.	No. Part number Specifying procedure		MB89191 /193 /195	MB89191A /193A /195A	MB8	9P195	MB89I	P195A	MB89PV190 MB89PV190A
			Specify when ordering masking		-101 ⁻²	Specify wordering	Specify when ordering masking		Fixed
	Port pull-up	P00 to P07 P30 to P37	Selectal	ole by pin	None	Selectab	ole by pin	None	Not available
1	resistors	P00 to P03 P40 to P45	Selectableb y pin	Not available	None	Selectable by pin	Not available	None	Not available
2	Power-on reset Power-on reset provided No power-on reset		Sele	ctable	Provided	Provided		Provided	Provided
3	Selection of oscillation stabilization wait time (at 4.2 MHz) ⁻¹		Sele	ctable	Fixed to 216/Fc	Selec	ctable	Fixed to 216/Fc	Fixed to 216/Fc
4	Reset pin output Reset output provided No reset output		Sele	ctable	Provided	Selectable		Provided	Provided
5	Oscillation type of clock 1 Crystal and ceramic oscillators 2 CR		Sele	ctable	"1" only	Seled	ctable	"1" only	"1" only

^{*1:} The oscillation stabilization time is generated by dividing the original clock oscillation. The time described in this item should be used as a rough guideline since the oscillation cycle is unstable immediately after oscillation starts. "Fc" indicates the original oscillation frequency.


^{*2: -101} and -201 are provided respectively for the MB89P195 and MB89P195A OTP versions as the standard products.


To Top / Lineup / Index MB89190/190A Series


■ ORDERING INFORMATION


Part number	Package	Remarks
MB89191PF MB89193PF MB89195PF MB89P195PF-101 MB89191APF MB89193APF MB89195APF MB89P195APF-201	28-pin Plastic SOP (FPT-28P-M17)	
MB89191P-SH MB89193P-SH MB89195P-SH MB89191AP-SH MB89193AP-SH MB89195AP-SH	28-pin Plastic SH-DIP (DIP-28C-M03)	
MB89191P MB89193P MB89195P MB89P195P-101 MB89191AP MB89193AP MB89195AP MB89P195AP-201	28-pin Plastic DIP (DIP-28P-M05)	
MB89PV190CF MB89PV190ACF	48-pin Ceramic MQFP (MQP-48C-P01)	

■ PACKAGE DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-88, Japan

Tel: (044) 754-3763 Fax: (044) 754-3329

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A. Tel: (408) 922-9000

Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag Germany

Tel: (06103) 690-0 Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED #05-08, 151 Lorong Chuan New Tech Park

Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

F9703

© FUJITSU LIMITED Printed in Japan